Übungsaufgaben Extremstellen berechnen
# Anmerkungen
$a, b, c$ geben die Nullstellen der Ableitungsfunktion $f’(x)=m \cdot \left( a^{n}(x-b)(x-c) + K \right)$ an, d. h. die Sattel- bzw. Extremstellen von $f(x)$.
(Hierbei gilt $a \in [-1, 1]\cap\mathbb{Z}$, $n \in {1,2,3,4}$, $b,c \in [-4,4]\cap\mathbb{Z}$, $K \in [-10,10]\cap\mathbb{Z}$ und $m \in {\pm 1, \pm 2, \pm 3}$. Diese Werte lassen sich im unten aufgeführten Python-Code beliebig anpassen).
Die Exponenten geben die Vielfachheit der Nullstellen an.
Falls Exponent vorhanden $\rightarrow$ VZW-Kriterium nötig.
Gerader Exponent $\rightarrow$ Sattelpunkt.
Ungerade Exponent $\rightarrow$ Extrempunkt.
# Aufgaben
Kategorie 1: Potenzfunktion
- $f(x) = \frac{3}{5}x^5 + 15$ (a=0^4)
- $f(x) = - \frac{1}{5}x^5 + 4$ (a=0^4)
- $f(x) = - \frac{1}{4}x^4 - 2$ (a=0^3)
- $f(x) = - \frac{1}{2}x^6 + 21$ (a=0^5)
- $f(x) = - \frac{1}{4}x^4 - 2$ (a=0^3)
- $f(x) = x^3 - 12$ (a=0)
- $f(x) = - \frac{1}{2}x^4 + 4$ (a=0^3)
- $f(x) = - \frac{1}{3}x^3 + 6$ (a=0)
- $f(x) = - \frac{1}{2}x^6 - 3$ (a=0^5)
- $f(x) = \frac{1}{5}x^5 - 1$ (a=0^4)
- $f(x) = - \frac{2}{3}x^3 - 4$ (a=0)
- $f(x) = - \frac{1}{2}x^4 - 6$ (a=0^3)
- $f(x) = x^3 - 21$ (a=0)
- $f(x) = - \frac{1}{7}x^7 + 7$ (a=0^6)
- $f(x) = - \frac{2}{3}x^3 - 20$ (a=0)
- $f(x) = \frac{3}{4}x^4 + 12$ (a=0^3)
- $f(x) = x^3 - 18$ (a=0)
- $f(x) = - \frac{1}{3}x^3 - 2$ (a=0)
- $f(x) = \frac{3}{7}x^7 - 15$ (a=0^6)
- $f(x) = - \frac{1}{7}x^7 - 10$ (a=0^6)
- $f(x) = \frac{1}{6}x^6 - 6$ (a=0^5)
- $f(x) = \frac{2}{5}x^5 - 18$ (a=0^4)
- $f(x) = - x^3 + 15$ (a=0)
- $f(x) = \frac{3}{5}x^5 + 21$ (a=0^4)
- $f(x) = - \frac{1}{3}x^3 - 3$ (a=0)
- $f(x) = - \frac{2}{7}x^7 + 8$ (a=0^6)
- $f(x) = - \frac{1}{3}x^3 - 9$ (a=0)
- $f(x) = - \frac{1}{7}x^7 + 5$ (a=0^6)
- $f(x) = - \frac{3}{4}x^4 - 9$ (a=0^3)
- $f(x) = - \frac{2}{5}x^5 - 8$ (a=0^4)
Kategorie 2: Zwei Extremstellen, nur Ausklammern nötig
- $f(x) = \frac{2}{3}x^3 + x^2 + 10$ (a=0, b=-1)
- $f(x) = \frac{2}{3}x^3 - 3x^2 + 8$ (a=0, c=3)
- $f(x) = - \frac{2}{3}x^3 - x^2 + 6$ (a=0, c=-1)
- $f(x) = - x^3 - \frac{9}{2}x^2$ (a=0, c=-3)
- $f(x) = - \frac{1}{3}x^3 - \frac{1}{2}x^2 + 5$ (a=0, b=-1)
- $f(x) = \frac{2}{3}x^3 + 2x^2$ (a=0, b=-2)
- $f(x) = - \frac{1}{3}x^3 + x^2 + 8$ (a=0, b=2)
- $f(x) = \frac{1}{3}x^3 - x^2$ (a=0, c=2)
- $f(x) = \frac{1}{3}x^3 + x^2 + 4$ (a=0, c=-2)
- $f(x) = - \frac{1}{3}x^3 + 2x^2 + 1$ (a=0, b=4)
- $f(x) = \frac{2}{3}x^3 + 4x^2 - 8$ (a=0, c=-4)
- $f(x) = \frac{2}{3}x^3 + 3x^2$ (a=0, c=-3)
- $f(x) = - x^3 - 3x^2 + 30$ (a=0, b=-2)
- $f(x) = \frac{1}{3}x^3 - x^2 - 3$ (a=0, b=2)
- $f(x) = x^3 + \frac{3}{2}x^2 - 24$ (a=0, c=-1)
- $f(x) = x^3 - \frac{3}{2}x^2 - 30$ (a=0, c=1)
- $f(x) = - \frac{2}{3}x^3 - 3x^2 + 16$ (a=0, b=-3)
- $f(x) = \frac{1}{3}x^3 - \frac{3}{2}x^2 + 8$ (a=0, c=3)
- $f(x) = x^3 - \frac{9}{2}x^2 - 3$ (a=0, c=3)
- $f(x) = - \frac{1}{3}x^3 - \frac{1}{2}x^2 - 10$ (a=0, c=-1)
- $f(x) = \frac{1}{3}x^3 - x^2 - 6$ (a=0, b=2)
- $f(x) = - \frac{1}{3}x^3 - x^2 - 2$ (a=0, b=-2)
- $f(x) = \frac{2}{3}x^3 - 2x^2 - 10$ (a=0, b=2)
- $f(x) = - \frac{2}{3}x^3 + 3x^2 + 8$ (a=0, c=3)
- $f(x) = \frac{2}{3}x^3 - 2x^2 - 6$ (a=0, b=2)
- $f(x) = - \frac{1}{3}x^3 - x^2 + 10$ (a=0, c=-2)
- $f(x) = \frac{1}{3}x^3 + 2x^2 + 7$ (a=0, c=-4)
- $f(x) = \frac{1}{3}x^3 + \frac{3}{2}x^2 + 8$ (a=0, c=-3)
- $f(x) = \frac{2}{3}x^3 + 3x^2 - 14$ (a=0, b=-3)
- $f(x) = - x^3 - \frac{3}{2}x^2 + 27$ (a=0, b=-1)
Kategorie 3: Zwei Extremstellen, quadratische Gleichung
- $f(x) = x^3 - 3x^2 - 24x + 30$ (b=-2, c=4)
- $f(x) = - \frac{2}{3}x^3 - 2x^2 + 6x + 2$ (b=-3, c=1)
- $f(x) = - x^3 - 3x^2 + 9x - 30$ (b=-3, c=1)
- $f(x) = - x^3 + \frac{15}{2}x^2 - 12x - 6$ (b=1, c=4)
- $f(x) = - \frac{1}{3}x^3 + 2x^2 - 3x + 2$ (b=3, c=1)
- $f(x) = - x^3 - \frac{15}{2}x^2 - 18x - 6$ (b=-2, c=-3)
- $f(x) = \frac{2}{3}x^3 - 3x^2 - 8x$ (b=-1, c=4)
- $f(x) = - \frac{1}{3}x^3 + \frac{1}{2}x^2 + 6x - 5$ (b=3, c=-2)
- $f(x) = - \frac{2}{3}x^3 + 8x - 10$ (b=2, c=-2)
- $f(x) = \frac{2}{3}x^3 + 3x^2 - 8x + 16$ (b=1, c=-4)
- $f(x) = \frac{2}{3}x^3 - 4x^2 + 6x + 14$ (b=1, c=3)
- $f(x) = - \frac{2}{3}x^3 + 2x^2 + 6x - 2$ (b=-1, c=3)
- $f(x) = - x^3 + \frac{3}{2}x^2 + 6x + 30$ (b=-1, c=2)
- $f(x) = - x^3 - 3x^2 + 24x - 6$ (b=-4, c=2)
- $f(x) = - x^3 + \frac{9}{2}x^2 + 12x - 15$ (b=-1, c=4)
- $f(x) = - \frac{1}{3}x^3 - x^2 + 8x - 8$ (b=-4, c=2)
- $f(x) = \frac{2}{3}x^3 + 2x^2 - 6x - 4$ (b=1, c=-3)
- $f(x) = x^3 - 3x - 30$ (b=1, c=-1)
- $f(x) = - \frac{1}{3}x^3 + \frac{5}{2}x^2 - 6x - 5$ (b=2, c=3)
- $f(x) = - \frac{1}{3}x^3 + x^2 + 8x - 7$ (b=4, c=-2)
- $f(x) = \frac{2}{3}x^3 + x^2 - 4x - 6$ (b=-2, c=1)
- $f(x) = x^3 - 3x^2 - 24x$ (b=-2, c=4)
- $f(x) = \frac{1}{3}x^3 + 3x^2 + 8x - 4$ (b=-2, c=-4)
- $f(x) = - x^3 + \frac{3}{2}x^2 + 18x$ (b=-2, c=3)
- $f(x) = - \frac{2}{3}x^3 + 2x^2 + 6x$ (b=-1, c=3)
- $f(x) = - \frac{2}{3}x^3 - x^2 + 12x$ (b=2, c=-3)
- $f(x) = - \frac{2}{3}x^3 + 7x^2 - 24x - 6$ (b=4, c=3)
- $f(x) = - \frac{1}{3}x^3 + \frac{5}{2}x^2 - 4x + 6$ (b=4, c=1)
- $f(x) = - x^3 - \frac{21}{2}x^2 - 36x + 6$ (b=-4, c=-3)
- $f(x) = - x^3 + \frac{3}{2}x^2 + 18x - 30$ (b=3, c=-2)
Kategorie 4: Ein Sattelpunkt, VZW-Kriterium, quadratische Gleichung
- $f(x) = - \frac{2}{3}x^3 + 2x^2 - 2x + 6$ (b=1^2)
- $f(x) = - x^3 - 9x^2 - 27x - 3$ (b=-3^2)
- $f(x) = \frac{2}{3}x^3 - 6x^2 + 18x - 18$ (b=3^2)
- $f(x) = x^3 - 12x^2 + 48x - 9$ (b=4^2)
- $f(x) = - \frac{2}{3}x^3 - 4x^2 - 8x + 14$ (b=-2^2)
- $f(x) = \frac{2}{3}x^3 - 8x^2 + 32x + 8$ (b=4^2)
- $f(x) = \frac{1}{3}x^3 - x^2 + x - 10$ (b=1^2)
- $f(x) = - \frac{2}{3}x^3 - 8x^2 - 32x - 10$ (b=-4^2)
- $f(x) = - \frac{1}{3}x^3 - 2x^2 - 4x - 10$ (b=-2^2)
- $f(x) = - \frac{2}{3}x^3 + 8x^2 - 32x + 18$ (b=4^2)
- $f(x) = x^3 - 6x^2 + 12x + 24$ (b=2^2)
- $f(x) = - x^3 + 3x^2 - 3x + 27$ (b=1^2)
- $f(x) = - \frac{2}{3}x^3 + 8x^2 - 32x + 14$ (b=4^2)
- $f(x) = - \frac{2}{3}x^3 - 4x^2 - 8x + 4$ (b=-2^2)
- $f(x) = x^3 + 3x^2 + 3x + 12$ (b=-1^2)
- $f(x) = \frac{1}{3}x^3 - 3x^2 + 9x - 2$ (b=3^2)
- $f(x) = - \frac{2}{3}x^3 + 8x^2 - 32x$ (b=4^2)
- $f(x) = - x^3 - 3x^2 - 3x + 18$ (b=-1^2)
- $f(x) = - \frac{1}{3}x^3 + 2x^2 - 4x + 9$ (b=2^2)
- $f(x) = - \frac{1}{3}x^3 - 4x^2 - 16x - 5$ (b=-4^2)
- $f(x) = \frac{2}{3}x^3 + 4x^2 + 8x - 10$ (b=-2^2)
- $f(x) = - x^3 + 6x^2 - 12x + 21$ (b=2^2)
- $f(x) = - \frac{1}{3}x^3 + x^2 - x - 7$ (b=1^2)
- $f(x) = - \frac{1}{3}x^3 - 3x^2 - 9x - 8$ (b=-3^2)
- $f(x) = \frac{2}{3}x^3 - 8x^2 + 32x + 2$ (b=4^2)
- $f(x) = x^3 + 9x^2 + 27x - 15$ (b=-3^2)
- $f(x) = \frac{2}{3}x^3 - 2x^2 + 2x - 20$ (b=1^2)
- $f(x) = x^3 + 9x^2 + 27x - 12$ (b=-3^2)
- $f(x) = \frac{1}{3}x^3 - 3x^2 + 9x - 3$ (b=3^2)
- $f(x) = \frac{1}{3}x^3 + x^2 + x - 2$ (b=-1^2)
Kategorie 5: Eine Extremstelle & eine Sattel-/Extremstelle, VZW-Kriterium, nur Ausklammern nötig
- $f(x) = \frac{1}{4}x^4 + x^3 - 8$ (a=0^2, c=-3)
- $f(x) = - \frac{3}{7}x^7 - 2x^6 - 30$ (a=0^5, b=-4)
- $f(x) = - \frac{1}{4}x^4 + \frac{2}{3}x^3 - 7$ (a=0^2, b=2)
- $f(x) = - \frac{1}{2}x^6 + \frac{6}{5}x^5 - 27$ (a=0^4, c=2)
- $f(x) = - \frac{3}{4}x^4 - 2x^3 - 15$ (a=0^2, c=-2)
- $f(x) = - \frac{1}{2}x^6 + \frac{9}{5}x^5 + 3$ (a=0^4, c=3)
- $f(x) = \frac{3}{5}x^5 - 3x^4 - 27$ (a=0^3, c=4)
- $f(x) = - \frac{1}{6}x^6 - \frac{2}{5}x^5 - 4$ (a=0^4, b=-2)
- $f(x) = - \frac{1}{7}x^7 - \frac{1}{3}x^6 - 6$ (a=0^5, b=-2)
- $f(x) = \frac{1}{3}x^6 - \frac{6}{5}x^5 - 18$ (a=0^4, b=3)
- $f(x) = \frac{3}{7}x^7 - 2x^6$ (a=0^5, c=4)
- $f(x) = - \frac{1}{2}x^4 + 2x^3 - 4$ (a=0^2, b=3)
- $f(x) = - \frac{1}{4}x^4 - \frac{4}{3}x^3 + 5$ (a=0^2, b=-4)
- $f(x) = - \frac{1}{2}x^6 + \frac{6}{5}x^5 - 30$ (a=0^4, c=2)
- $f(x) = \frac{1}{5}x^5 - x^4 - 2$ (a=0^3, c=4)
- $f(x) = \frac{1}{7}x^7 + \frac{1}{2}x^6 + 8$ (a=0^5, c=-3)
- $f(x) = - \frac{1}{7}x^7 + \frac{2}{3}x^6 + 1$ (a=0^5, b=4)
- $f(x) = - \frac{3}{4}x^4 + 2x^3 + 3$ (a=0^2, b=2)
- $f(x) = \frac{1}{2}x^6 + \frac{12}{5}x^5 + 15$ (a=0^4, c=-4)
- $f(x) = - \frac{3}{4}x^4 + 2x^3 - 3$ (a=0^2, b=2)
- $f(x) = \frac{1}{2}x^6 - \frac{12}{5}x^5 + 24$ (a=0^4, c=4)
- $f(x) = \frac{1}{2}x^4 + \frac{4}{3}x^3 + 20$ (a=0^2, c=-2)
- $f(x) = \frac{1}{4}x^4 - \frac{2}{3}x^3 + 8$ (a=0^2, c=2)
- $f(x) = \frac{1}{2}x^4 - \frac{4}{3}x^3 + 16$ (a=0^2, b=2)
- $f(x) = - \frac{1}{4}x^4 - x^3 - 9$ (a=0^2, c=-3)
- $f(x) = - \frac{3}{5}x^5 + 3x^4 + 24$ (a=0^3, b=4)
- $f(x) = - \frac{1}{6}x^6 + \frac{2}{5}x^5 + 5$ (a=0^4, b=2)
- $f(x) = \frac{3}{5}x^5 + 3x^4 + 3$ (a=0^3, b=-4)
- $f(x) = \frac{3}{5}x^5 + \frac{3}{2}x^4 - 3$ (a=0^3, c=-2)
- $f(x) = - \frac{3}{4}x^4 + 3x^3 + 30$ (a=0^2, b=3)
Kategorie 6: Zwei bis drei Sattel-/Extremstellen, VZW-Kriterium, quadratische Gleichung
- $f(x) = - \frac{2}{5}x^5 - \frac{5}{2}x^4 - \frac{8}{3}x^3 - 20$ (a=0^2, b=-4, c=-1)
- $f(x) = \frac{3}{5}x^5 + \frac{15}{4}x^4 + 6x^3 - 27$ (a=0^2, b=-3, c=-2)
- $f(x) = - \frac{1}{2}x^6 - \frac{6}{5}x^5 + \frac{9}{4}x^4 - 18$ (a=0^3, b=-3, c=1)
- $f(x) = \frac{1}{6}x^6 - \frac{3}{5}x^5 + \frac{1}{2}x^4 + 4$ (a=0^3, b=1, c=2)
- $f(x) = - \frac{3}{5}x^5 + 4x^3 + 15$ (a=0^2, b=2, c=-2)
- $f(x) = - \frac{3}{7}x^7 - \frac{3}{2}x^6 - \frac{6}{5}x^5 - 21$ (a=0^4, b=-1, c=-2)
- $f(x) = - \frac{3}{5}x^5 - \frac{9}{4}x^4 + 4x^3 + 9$ (a=0^2, b=-4, c=1)
- $f(x) = - \frac{1}{3}x^6 + \frac{1}{2}x^4 + 12$ (a=0^3, b=-1, c=1)
- $f(x) = \frac{1}{6}x^6 - \frac{1}{5}x^5 - 3x^4 - 3$ (a=0^3, b=4, c=-3)
- $f(x) = \frac{3}{7}x^7 - x^6 - \frac{9}{5}x^5 + 9$ (a=0^4, b=3, c=-1)
- $f(x) = - \frac{1}{5}x^5 + \frac{16}{3}x^3 - 5$ (a=0^2, b=-4, c=4)
- $f(x) = \frac{1}{2}x^6 + \frac{9}{5}x^5 + \frac{3}{2}x^4 + 3$ (a=0^3, b=-2, c=-1)
- $f(x) = - \frac{1}{6}x^6 - \frac{4}{5}x^5 - \frac{3}{4}x^4 + 1$ (a=0^3, b=-3, c=-1)
- $f(x) = \frac{3}{5}x^5 - 9x^3 - 18$ (a=0^2, b=-3, c=3)
- $f(x) = \frac{1}{6}x^6 + \frac{6}{5}x^5 + \frac{9}{4}x^4 + 3$ (a=0^3, b=-3^2)
- $f(x) = - \frac{2}{7}x^7 - \frac{5}{3}x^6 - \frac{12}{5}x^5 + 18$ (a=0^4, b=-3, c=-2)
- $f(x) = \frac{1}{7}x^7 - x^6 + \frac{8}{5}x^5 + 9$ (a=0^4, b=2, c=4)
- $f(x) = - \frac{1}{7}x^7 - \frac{1}{3}x^6 + \frac{3}{5}x^5 + 7$ (a=0^4, b=1, c=-3)
- $f(x) = - \frac{3}{7}x^7 + \frac{27}{5}x^5 - 12$ (a=0^4, b=3, c=-3)
- $f(x) = - \frac{1}{5}x^5 - \frac{5}{4}x^4 - \frac{4}{3}x^3 + 10$ (a=0^2, b=-1, c=-4)
- $f(x) = - \frac{3}{7}x^7 + \frac{3}{2}x^6 + \frac{12}{5}x^5 + 6$ (a=0^4, b=4, c=-1)
- $f(x) = \frac{3}{7}x^7 - \frac{3}{2}x^6 - \frac{12}{5}x^5 - 12$ (a=0^4, b=4, c=-1)
- $f(x) = - \frac{1}{5}x^5 + \frac{16}{3}x^3 + 10$ (a=0^2, b=4, c=-4)
- $f(x) = \frac{1}{2}x^6 - \frac{3}{4}x^4 - 21$ (a=0^3, b=1, c=-1)
- $f(x) = - \frac{2}{5}x^5 - 3x^4 - 6x^3 + 16$ (a=0^2, b=-3^2)
- $f(x) = - \frac{3}{5}x^5 - \frac{3}{2}x^4 + 3x^3 - 6$ (a=0^2, b=1, c=-3)
- $f(x) = \frac{2}{7}x^7 + \frac{5}{3}x^6 + \frac{12}{5}x^5 + 10$ (a=0^4, b=-3, c=-2)
- $f(x) = \frac{1}{2}x^6 - \frac{3}{5}x^5 - 9x^4 + 12$ (a=0^3, b=4, c=-3)
- $f(x) = \frac{1}{7}x^7 - \frac{1}{5}x^5 - 2$ (a=0^4, b=-1, c=1)
- $f(x) = \frac{3}{7}x^7 - \frac{3}{5}x^5 + 3$ (a=0^4, b=-1, c=1)
# Python-Code
| |