Mastodon

Meistens Mathe

Suche

SuchsymbolSymbol, um die Suche zu öffnen

Distributivgesetz beim Skalarprodukt

Zuletzt aktualisiert Oct 30, 2022 Quelldatei anzeigen

The geometric definition gives us the dot product as the magnitude of $\vec{a}$ multiplied by the scalar projection of $\vec{b}$ onto $\vec{a}$. This is given for any $\vec{a}$, $\vec{b}$ in n-space.

$$\vec{a}\cdot\vec{b}=|\vec{a}|\cdot|\vec{b}|\cdot cos(\vartheta)=|\vec{a}|\cdot|\vec{b}_{\vec{a}}|$$

The dot product of $\vec{a}$ with $\vec{b}+\vec{c}$ is just the magnitude of $\vec{a}$ times the scalar projection of $\vec{b}+\vec{c}$ onto $\vec{a}$. But that can be broken up into components, after which normal distribution takes over.

$$\begin{aligned}\vec{a}\cdot\left(\vec{b}+\vec{c}\right)&=|\vec{a}|\cdot\left|\left(\vec{b}+\vec{c}\right)_{\vec{a}}\right|\\&=|\vec{a}|\cdot\left(|\vec{b}_{\vec{a}}|+|\vec{c}_{\vec{a}}|\right)\\&=|\vec{a}|\cdot|\vec{b}_{\vec{a}}|+|\vec{a}|\cdot|\vec{c}_{\vec{a}}|\\&=\vec{a}\cdot\vec{b}+\vec{a}\cdot\vec{c}\end{aligned}$$

Quelle: https://math.stackexchange.com/questions/1215063/prove-the-distributive-property-of-the-dot-product-using-its-geometric-definitio